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Miscibility and phase diagram of mixed submonolayers: 
mean field and hard hexagon approximation 
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Centre #Etudes NuclCaires, DRFJSPh-MDN, 85X, 38041 Grenoble CCdex, France 

Received 12 July 1990, in findl form 15 February 1991 

Abstract. The equations which determine the equilibrium between commensurate and 
incommensurate solid phases of a mixed (Xe-AI) or (Xe-Kr) submonolayer adsorbed on 
graphite are written in a mean field theory which takes thermal expansion into account. 
The mean field potential is given by an integral equation which is solved to first order in 
temperature. The agreement withexperimentaldatais poor. In thecaseof Xe-Kr mixtures, 
when the size difference is small, a phenomenologicdl theory gives good results. At low 
temperature it is possible to go beyond the mean Reld approximation and to obtain the 
qualitative phase diagram. The particular case of a solid of small atoms (41) with a weak 
concentration of big atoms (Kr) can be treated by an approximate version of Baxter's hard 
hexagon model and the results are promising. An interpolation between mean field and hard 
hexagons, which we call the tough hexagon model, is also introduced. 

1. Introduction 

It is well known [14] that adsorbed monolayers on crystal surfaces can be either 
commensurate or incommensurate with the substrate according to the nature of the 
constituents (adsorbate and substrate) and to temperature and pressure. The most 
widely studied systems are probably rare gases on graphite [I, 21 because of their 
simplicity. The only gases which form a commensurate, two-dimensional solid phase are 
Kr [l, 2,4,5], He [&8] and (under high pressure) Xe [9.10]. Howeve>, as observed by 
Bohr [ll], mixtures of Xe and Ar can form a commensurate, d3 x .\/? phase in 
equilibrium with the two-dimensional gas ('submonolayer') although each constituent 
is incommensurate in the same circumstances if isolated. Analogously, Marti era1 [12] 
and de Beauvais [13] realized that mixed submonolayers of Xe and Kr can have a 
commensurate solid (cs) phase even at high Xe concentrations. The essential exper- 
imental data are displayed in figure 1 and the main geometric infomation in figure 2. 

In the present paper, various theoretical approaches to the problem are discussed. 
As usual in statistical physics, the first step is a mean field theory. In the present paper, 
mean field equations which take into account thermal expansion in a consistent way are 
written for the first time. An accurate solution of these equations turns out to be very 
difficult. Moreover, amean field theory, which by definition neglects short-range order, 
can only give a qualitative agreement with experiment. The agreement is particularly 
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Figure 1. The phase diagram at about 45 R. (a) and (b) Experimental data according to de 
Beauvais[l3). (c)and(d) Mean fieldapproximation (section4ofthepres~ntarticle). Incase 
(d) an argon rich incommensurate solid (IS) phase is stable for x > 0.99983. (e) The hard 
hexagon approximation (section 5 ) .  This approximation is only appropriate for Ar4ch Xe- 
Ar mixtures. 

Figure 2. The geometry of adsorbed rare.gas 
monolayerson graphite. The cornersof the hexa- 
gons are graphite atoms. Easy adsorption sites arc 
the centres of the hexagons. The dotted quad- 
rangle shows the commensurate unit cell and RO 
denotes the interatomic distance in the com- 
mensurate phase. 

bad in rare gas mixtures when hard-core effects become important, Possible alternative 
theories are discussed in sections 5 and 6, and some predictions on the low temperature 
part of the phase diagram are made. 

The following theory is in principle not restricted to the case of submonolayers. The 
effect of the chemical potential in completed monolayers might also be investigated, as 
it has been by Hommeril and Mutafschiev [14] in a mixture which seems more adequate 
than rare gases for a mean field treatment. 

2. The model 

The monolayer will be treated as strictly two-dimensional and classical. Classical 
mechanics allow the momentum variables to  be integrated out. Then the atoms are 
characterized by their position vectors R,, which have two components. The approxi- 
mations involved in this description are described in [3]. The monolayer consists of N 
atoms of two species A (= Xe) and B (= Kr or Ar). Let x be the concentration in B 
atoms and Ro = 4.26 8, the atomicdistance in the CS, v3 X f i p h a s e  (figure2). Let NI,  
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be the number of atoms in the commensurate phase. It is convenient to characterize 
the degree of expansion or contraction. In the incommensurate solid (IS) phase the 
interatomic distance is R = R o q .  In agreement with the basic assumptions of the 
mean field approximation, it is assumed to be constant. 'This cannot be expected to be 
very good, but the mean field approximation is the first, and unavoidable step of a 
hierarchy of approximations which will be sketched in the last section. 

For the determination of the structure. the free energy Nf can be defined [3] by 

where T = l/pis the temperature, N A  = N(l - x) andNB = Nx. Energiesaremeasured 
in Kelvin, so that the Boltzmann constant is 1. The factor 1/Ra under the integral is 
arbitrary, and would not be appropriate for the determination of the specific heat. 
Changing this factor would add tof, the free energy per atom, a constant proportional 
to temperature. The Hamiltonian is assumed to have the form 

ge = x u  + g e A S  (2) 

where the first term is a pair interaction between adatoms, 

CY. y = A, B, pA(R,) = 1 if the atom at R.  is of kind A and ps(R, )  = 1 - pA(R,). The 
three pair potentials Uefi will be approximated by Lennard-Jones potentials: 

U,(r )  = 4 E e y [ ( % w  - (u,/r)61. (4) 

The second term in (2) is the substrate potential 

that is periodic and can be expanded in Fourier series, introducing Fourier coefficients 
A,. 

w,w= Z,A.(Q)COS(Q.~). (6) 
Q 

To discuss phase coexistence, it is appropriate to work in the grand ensemble. Two 
chemical potentials pA, wB are introduced, and one has to minimize the grand potential 

Q = N f - p A ( 1  -X)-PBNX = No(f(x, R, T ) - p A ( l  -x ) -~Bx)R~/R* .  (7) 

3. Phase coexistence 

The quantity which has been measured is the concentration of the light element (Kr or 
Ar) at coexistence between the two-dimensional gas, the two-dimensional com- 
mensurate solid (CS) and the incommensurate solid (IS). Let x (similarly y) be this 
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concentration in the IS (similarly cs) phase. We wish to calculate them. At coexistence, 
the associated grand potentials Q,.: Q,, Q, should be equal. 

J Villain and J C Moreira 

Q~(T,PA>PB)  = %(T,Y,P,,PB) = Q ~ ( T , ~ , R , P A , P B ) ,  (8) 

On the other hand, Q,and Q,should be minimum with respect toxandy , respectively, 
and Qi should be minimum with respect to R: 

( a Q i / W r . R . p A . , , B  = (aQc/aY)T.pA.pB = ( ~ Q , / a R ) ~ . x , p A . p B  = 0. (9) 

As remarked by Marti era1 [ 121, and rederived at the end of thissection, the density 
ofthe two-dimensional gasisso lowat the temperaturesofinterest that itsgrandpotential 
is practically zero. Thus, relation (8) may be replaced to a good approximation by 

Q ~ ( T , Y , P A , L ~ B )  = Qi(T,x, R , P A , P B )  = 0. (10) 

This allows for a simplification of the last formula (9). Actually this formula can be 
written as 

(1/N)(alaR)P"Q,lN)l = !a/aR)(Q,/N) + (Qi/N)(a/aR) In N = 0 

( a l W Q i / N )  = 0 (11) 

and the second term vanishes according to (IO). The resulting equation 

turns out to be simpler. 

is obtained from (1) with X replaced by (5). The result is 

Q8 = T N ,  In(NA/Noe) + T N ,  In(N,/N,e) - p A N A  - P B N B  

We now outline the proof that Q,can be neglected in (8). In the gas the free energy 

- T N ,  In JA - T N ,  In JB 

where 

Minimization with respect to N A  and N B  yields N,, = NUJ,  exp(p,/T) and therefore 

N A  and N B  can be seen to be so small in the two-dimensional vapour phase that this 
Q, = - T N  = - T(NA + N s ) .  

expression can be replaced by zero as stated above. 

4. Mean field theory for the two-dimensional solid phases 

4.1, Basic formulae 
In the available mean field theories 112. 141, thermal expansion was not taken into 
account self-consistently. In the following, a self-consistent theory will be formulated. 
In principle, the mean field approximation can be defined as the best approximation of 
the partition function by a product of single-atom partition functions zc [ 151. This would, 
however, be too ambitious. Therefore the zi)s will be forced to be those of harmonic 
oscillators. Thus, we are looking for the best Einstein model. After a tedious calculation 
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and 

Q , / N  = T { x I ~ ( x K , ~ R ~ / x T )  + (1 - x) h[(l - x)K,,R'/nT]} 

+&[(I - X)'OAA(R) f &(I - X)OBA(R) + .c2fiBB(R)] 

- ( l  - X I P A  -xpB (13) 

O,(R) = U,@, - 8,) (14) 

where 

I 

for an interatomic distance R. Generally, interactions between nearest neighbours will 
be assumed, so that OJR)  = 6U,(R). K, is the strength of the Einstein oscillator for 
atoms of kind LY. In formula (12) the first expression between square brackets is the 
entropy and the next terms are the energy in the mean field approximation. The entropy 
consists of a configurational contribution x Inx + (1 - x )  In(1 - x ) ,  and a vibrational 
contribution, containing In K,. This contribution is responsible for thermal expansion, 
since at higher temperatures the atoms want to have more room for their vibrations. K,  
can be expanded in powers of T .  The first order expansion was found at the cost of a 
terrific and hopefully correct calculation to be 

withy, = 1 - y andy, = y .  K,, is given by an analogous equation without the last term, 
and withy replaced by x .  We have used 

and 

Aq(R)  = 288(~ , /R~) [3082(~ , /R) '~  - 305(0,,/R)']. (166) 

In (166) and (16a), interactions between non-nearest neighbours have been 
neglected. W; is defined by the harmonic approximation of W, valid near its minimum 
at r = 0, 

W,(r) = W(0) + bWzr*. (17) 

Equation (16n) and the zero'th order approximation of (15) are derived in appendix 
B.Thefiveequations(9) and(l0)determine thefiveunknownsR,r,y,p,andp,when 
the potentials WA(0), W,(O), E, and U, are known. As usual, the chemical potentials 
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can be eliminated because they appear linearly. One obtains 
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+ air.,, - &OBB - 1(1 - Y)*(O', - 20ZB + OLE) 
+ b(1 - X)*(OAA - 2 O x ~  + OBE) - Tln(x/y) .  (186) 

4.2. Numerical results and dificulties 

Since (12) and (13) are correct to order Tonly, the A term in (15) should be neglected. 
On the other hand (15) cannot be replaced by its first term if R is too large because (16a) 
turns out to be negative. This happens, for instance, for QBB in Xe-rich Xe-Ar mixtures. 
A negative value of K is unphysical as seen from appendix B, formula (B.1). A possible 
solution of our troubles is to neglect vibrational entropy, i.e. to replace the K s  in (12) 
and(13) byl .  ForeachvalueofRandy,itiseasytocomputexfrom(13),andthen the 
W,(O)'s are given by (18). The values of R and y can be adjusted until the desired 
values of the W,(O)'s are obtained. We have chosen the Lennard-Jones parameters and 
substrate potential values close to those used by Steele [16] and Novaco and McTague 
[17], with suitable modifications in order, in particular, to stabilize the commensurate 
phase of pure Kr. The values are given b the following table, to be complemented by 
the familiar rules [16,17] = e M E B B  and UAB = (UAA + CJBB)/~. 

€AA EBB OAA UBB WA(O) Wn(0) Ro 
. , ,  ,-Y , . I . ,  *,,,// ~.,.,,,, ,"J. 

Xe-Ar 221 122 4 3.44 40 33 4.26 
Xe-Kr 221 171 4 3.62 40 34 4.26 

These values are certainly not the most up to date but, as shown by Marti et a1 [12]. 
refinements of the potentials would not improve the agreement with experiment much, 
which turns out to be poor as seen from figure 1. 

The theoretical miscibility is seen to be much weaker than experimentally observed. 
This disagreement between theory and experiment is due to two factors. First of all, 
the mean field approximation neglects short-range order. This is certainly a very bad 
approximation for the argon-rich, incommensurate phase of the Xe-Ar mixtures. 
Indeed these phases should have an atomic distance close to that of pure, two-dimen- 
sional argon, namely 3.86 A according to Lauter eta1 [MI. For such short distances the 
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energy of a Xe-Xe pair is very large. Thus, the real concentration of X e X e  pairs should 
be much lower than the mean field approximation, which therefore cannot predict 
the correct concentrations at coexistence (83% and 91% according to figure 1). An 
approximation more appropriate to this case will be presented in section 6. 

The second reason for the bad agreement with experiment is, as already mentioned, 
that the vibrational entropy could be evaluated with reasonable accuracy at the tem- 
perature of interest only if the power series in Twere pushed to a high order. As seen 
above, this difficulty is especially serious for Xe rich mixtures of Xe and Ar, where (16a) 
becomes negative for a = y = B = Ar. 

4.3. A phenomenological approach 

To circumvent the second difficulty we have used another method and we tried to fit the 
experimental data by equations (12) and (13) with a fixed value of K,, to be included in 
thechemical potentials, but with adjustable potentials ow. These potentials are assumed 
to have the form (4), which is certainly better than the harmonic approximation of 
appendix B. The Lennard-Jones parameters are thus adjustable. The temperature- 
dependent renormalization is intended to account for vibrational entropy which is too 
difficult to calculate accurately. Our procedure was the following. 

(i) Start with the experimental values of x and y. 
(ii) Neglect the temperature-dependent terms in (12), (13) and (18) exceptthecon- 

fgurational enrropy (last term of (18)), but replace the Lennard-Jones parameters and 
the substrate potentials WJO) by effective (temperature dependent) parameters. Thus, 
the ab initio evaluation of the vibrational entropy is replaced by a phenomenological 
renormalization of the parameters, which physically corresponds to this vibrational 
entropy. 

(iii) Look for reasonable values of these parameters which satisfy equations (12), 
(13) and (18). 

Technically, we proceeded as follows. Insertion of (13) into (1 1) yieldsx as a function 
of R through an algebraic equation of second degree, so R is easily obtained when x and 
the Lennard-Jones parameters E,,, and uq are known; then WA(0) and WB(O) are given 
by (18). Various sets of Lennard-Jones parameters have been tested. The Lennard- 
Jones parameters of the pure system are fairly well known. In particular, uAA and uBB 
should fit the data of the pure system. The interatomic distance is d = 3.86 for Ar and 
4.45 for Xe. This imposes 3.96 ,& (lower than Steele’s [17] value 4.05 which is 
frequently used [IS]) and uAAr.Ar 3.44 A. For the cross-parameters, the starting point 
is the familiar rule [17,18] uAB = (uAA + uBR)/2. However, in the Xe-richphases, it has 
been necessary to take uBA appreciably bigger than (U, + uBB)/2. The difference is 
especially large for Ar-Kr mixtures, i.e. when the difference between the radii is 
particularly large. The physical meaning of this effect can be understood from the fact 
that the atom wants to increase its vibrational entropy. For the energy parameters we 
have taken values close to those of Steele. However, we have been obliged to attribute 
a very small value to the substrate potential in the case of Ar. Again, the large difference 
between radii makes the use of the mean field approximation difficult. For T = 50, the 
most reasonable values that we have found are the following. 
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Ar 221 165 122 3.97 3.85 3.5 45 8 0.096 0.3 4.441 
Kr 221 200 171 3.97 3.86 3.65 47 27 0.064 0.25 4.445 

Figure3. (U) and ( b )  Mixed triangles. ( c )  and (d) 
Other typesof triangles. (e) Aground state when 
(22) issatisfied. Oiilymixed triangles are prosent. 

For the Xe-poor phase of the Ar mixture, the mean field approximation cannot be 
used because short-range order is too strong as explained above. 

The values listed in the table are effective ones, which may be different from 
real values [16. 17, 19, 201 for various reasons (thermal expansion, non-next-nearest 
neighbours, three-body interactions). However, this is not sufficient to explain the low 
value of the substrate potential for Ar. 

5. The low temperature regime 

At zero temperature the equilibrium state of a submonolayer can be obtained by 
minimizing theenergy at fixed Nandx, without chemical potential. Interactions between 
nearest neighbours only will be assumed, and local strains will be neglected. This is 
reasonable in the commensurate phase. Therefore. the nature of the ground state will 
now be investigated within the assumption that the ground state is commensutate. The 
correctness of this assumption will then be discussed, and the qualitative phase diagrams 
of figure 4 will be derived. In the Cphase, the adsorbate-adsorbate interaction energy 
E,, can be expressed as a function of the numbers uq. of ay pairs and the corresponding 
energies U&?,,). In the commensurate phase. this energy is 

NE,, YAAUAA(RO) + YABUABWO) f PBBUBB(RO) (19) 
where N = Nosinceonedealswith the Cphase. TheindexOwill beomittedforsimplicity. 
On a triangular lattice, t he  formulae 
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This is the Hamiltonian of an antiferromagnetic king model on a triangular lattice 
with interactions between nearest neighbours of strength J = a[ UAA(RO) - 
2Um(R0) t UBB(RO)] in a magnetic field H = 35 - 3[UBB(Ro) - UAA(RO)]. The identi- 
fication with the usual king form 

2t = - J u R u R ~  - H Z  U R  = - J ( v A A  + vsB) + J u A ,  - HN(1 - k) 

is easily made after using (20).  The interaction can be seen to be positive, i.e. anti- 
ferromagnetic. The physical meaning is that, on the rigid, commensurate lattice, big 
ions tend to form a mixture with small ions in order to exploit the available space as well 
as possible. In contrast with usual magnetism, the energy (21) should be minimized at 
constant magnetizationx - 6 rather than fixed magnetic field H.  However, if one solves 
the king problem in zero field, the magnetization is clearly zero. Thus, the case x = 1 
corresponds to a vanishing magnetic field H = 0. The interest in this remark is that the 
antiferromagnetic king model on a triangular lattice is exactly soluble for H = 0. It has 
no transition. This means that there is no superstructure for x = f and, presumably, for 
x close to 4. 

On the other hand, for x = k, the ground state is non-degenerate and shows a 
superstructure with three sublattices, two of them being occupied by A atoms and 
the third one by B atoms. This is easily seen from (21) because the minimum of E, 
corresponds to  the maximum of U ~ B ,  and vAB turns out to be equal to the number of 
‘mixed’ triangles. A triangle is called mixed if it is an AAB or ABB triangle (figure 3) .  
The number of triangles is equal to 2N. It is easily seen that all triangles can be of the 
‘mixed’ kind (AAB or ABB) if 

(RR’) R 

B = Z X * $ .  (22) 

If condition (22) is satisfied, the minimum adatom-adatom interaction energy in the 
cs phase is, according to  (21) ,  

NE,,  = 3NU,u(Ro) f ~NX[UBB(RO) - UAA(Ru)]  

- N[UAA(RO)  - ~ U A B ( R O )  + uBB(RO)l. (23) 

For x = f (or 5) the condition that all triangles are mixed is sufficient to determine 
the configuration of the system, which is its ground state. It has the superstructure 
described above. Presumably the superstructure is also present for x close to f. 

On the other hand, if x > 8, the maximum number of mixed triangles is obtained 
when there is a maximum number of ABB triangles, and therefore no AAA and no 
AAB triangle. Two cases should be considered. 

(i) If the pure B phase is incommensurate, the rigid lattice model cannot be applied. 
Energy is gained if all BBB triangles are grouped to form a pure B phase which becomes 
incommensurate. Thus there is phase separation. This occurs for Xe-Ar mixtures for 
x > 5, but also for Xe-Ar and Xe-Kr mixtures for x < 9 (figure 4(a)). 

(ii) If the pure B phase is commensurate, the rigid lattice model is applicable. Thus, 
one has to maximize the number of ABB triangles. The solution is highly degenerate and 
the concentration can be varied continuously. This occurs in Kr-rich, Xe-Kr mixtures 
(figure 4(a)) .  
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X 
Figure 4. Qualitative phase diagrams. Watched regions arc coexistence domains. C = com. 
mensurate phase. I ,  I’ = incommensurate phases. S = commensurate phase with super- 
StNCtUre, 

The above discussion is incomplete because the stability of the commensurate phase 
with respect to phase separation has not been taken into account when (22) is satisfied. 
Stability implies that the energy of the commensurate phase is lower than the energy of 
a system of coexisting pure phases A and B, which is for Xe-Ar and Xe-Kr mixtures, 
respectively: 

3 W  - ~ ) U A A ( R A )  + ~ N ~ ~ B B ( R B )  

W 1  - ~ ) U A A ( R A )  + ~ W U B B ( R O )  + WE] 
wherc 3w3, = - W,(O), and R, = 2’b,, is the atomic distance of the pure CY phase, so 
that U,,(R,) = - E,. According to (23) the stability condition of the cs phase at T = 0 
is therefore for Xe-Ar 

- x)[’%A - O A A ( R A )  + U’A(O)l + - o S B ( R B )  + wB(o)l 

- A( &AA - 2criB + OBE) < 0 (244 

and for X e K r  

(1 - X ) [ ~ A  - O,(RA) + w,(o)] - h(*AA - 2eAB + irfiS) < 0. (246) 

The values of the Lennard-Jones parameters found in section 4.2 are not reliable 
because they are spoilt by approximations and thermal effects. Therefore more con- 
ventional values will be used to see whether (24) is satisfied. First of all we assume 
[16.17] E& = E , , E ~  and2uq = U=. + uw. 

5.1. Xe-Kr mixtiires 

We take [16, 171 ~,=221 E;, 171K, u A A r 3 - 9 7 A ,  uBB=3.65A. Then 
&AA 7 -1198K, = -1165 K, &BE = -981 K, U A A ( R A )  = -&AA = -1326 K,  
and UB,(RB) = - 6 ~ ~ ~  = -1026K. Taking 116, IS] W,(O) = WB(0) = 30K, relation 
(24b) is seen to be satisfied for all values of x > f. Figure 4(a) can be guessed from these 
T =  0 results. 
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5.2. X e A r  mixtures 

Now = -1198 K, CAB = -977K, ofBB = -624 K, OAA(RA) = -1326 K and 
UBB(RB) = -732 K. It turns out that (24a) is notsatisfied, so that Xe and Ar do not mix 
at T = 0. From these zero-temperature resultspne can guess the phase diagram of figure 
4(b).  Mixing of Xe and Ar occurs when the configuration entropy overcompensates the 
energy loss, say above 10 K according to a rough evaluation. This conclusion may be 
altered if more recent data [19,20] are used. 

6. The tough hexagon model 

The mean field approximation underestimates badly the solubility of big A atoms among 
small B ones, e.g. Xe in Ar. This is because AA pairs 'cost' a huge energy. 

In this section we propose an approximation appropriate to big A atoms among small 
Bones. 

The simplest idea would be to forbid AA pairs completely. The problem is then to 
calculate the entropy of an AB mixture at the sites of a triangular lattice, when A atoms 
cannot touch. This is Baxter's hard hexagon problem [21]. This model has an exact. but 
complicated solution. Instead, an approximate solution (appropriate for small values of 
1 - x )  will be presented. Also, BB pairs will not be strictly forbidden, but only a 
proportion (1 - p )  of the N(l - x)' BB pairs allowed by MFA will be accepted. The 
number of AA and AB pairs is then obtained from (20), and the energy is 
M = ~ N ( I - ~ ) ( I  - x ) ' O A A + N ( I - X ) ( X + P - P X ) ~ T A B  +~N(X~-~(I -X) ' )OBB.  

(25) 
This model will be called the 'tough hexagon model'. The parameterp is avariational 

parameter which has to minimize the free energy. Now the entropy T l n g ( p ,  x )  will be 
calculated approximately. g is the number of ways to distribute N(l - x )  big A atoms 
among N sites on a triangular lattice. We assume first that the N x  A atoms are labelled 
1,2 ,3 , .  , . , N(l - x ) ,  and then the result will he divided by the number (N(1 - x ) ) !  of 
labellings. The first atom can be placed in Ndifferent ways. Then a proportionp of the 
six neighbours of the first A atom are discarded. The number of remaining sites is 
N - 1 - 6p = N - q, where q = 6p t 1. One of these sites is randomly chosen and the 
second A atom is placed there. The number of ways to place two marked atoms is 
therefore N(N - q ) ,  and N ( N  - q) for atoms which are not marked. Then a proportion 
p of the six neighbours of the second A atoms are discarded. The number of remaining 
atoms will he approximated by N - 2q. This is an underestimation because the two A 
atoms can have common neighbours. Then the third A atoms are placed randomly 
among the remaining sites, etc. Iterating the argument, the number of ways to place 
N(l - x )  A atoms is seen to be 
N ( N - q ) ( N - Z q ) .  . . (N-N(l-x)q+l)=qN('-"'[(N/q)!Ij[(N/q)-N(l-x)]!. 

For non-marked atoms the result is therefore 
g = q"'-X)(N/q)!/(N/q - N(1 - x ) ) ! ( N ( l  - x ) ) !  

and, using the Stirling formula, the entropy turns out to be 
In g = -N[l/( 1 + 6p) - (1 - x ) ]  In[ 1 - (1 + 6p)( 1 - x ) ]  - N( 1 - x )  In( 1 - x ) .  

In g = - M+ - (1 -x)] In[l - 7(1 - x ) ]  - N(l - x )  In(1 - x ) .  

(26) 

(27) 

In the hard hexagon model ( p  = 1) formula (26) reads 

The entropy is seen to vanish for x = 6/7. The correct value is obviously 4, when the 
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hard hexagons form a close packing. Thus. our approximation is poor for large values 

Neglecting vibrational entropy, the free energy per atom F = (% - Tln g ) / N  is then 
obtained by addition of (25). Adding the chemical potentials, the grand potential in the 
incommensurate phase is 

Q i / N  = T[1/(1+ 6p) - (1 - x ) ]  In[ 1 - (1 + 6p)(l -x)] + T(l -x) In(1 -x) 
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of (1 - x). 

+ .i(~ -p) ( l  - x)’ O,,(R) + 2(1- x ) ( x  + p  -px)UAB ( R )  

+ (x’ - p( 1 -x)*)OBB(R)] - (1 - x ) p A  - x ~ B .  (28) 

The approximation developed in this section i s  particularly appropriate for Ar-rich, 
Xe-Ar mixtures. In that case CAA takes very large values, which are even positive for 
R close to the pure Ar value. Then the mean field approximation is catastrophic as 
stressed before, while the hard hexagon approximation ( p  = 1) isquite reasonable. For 
the sake of simplicity, the final result, replacing (lS), will only be given forp = 1, while 
the general formula can be found in appendix C: 

- wB(0)=+eBB - ioBB -&(I - y ) ? ( i i X A  - 2eAB + Crg,) - T ~ n [ i  -7(1 - x ) ] ‘ / 7 / y  

-w,(o)=.$U;, - & y ’ ( o x A  -2OAB + ObB) + $(-2Ob, + OBB) 
(290) 

- Tln[(l -x)/(l  -y)]-(6T/7) ln[l-7(1-x)]. (296) 
The main feature of these equations is that U,,, the energy of a Xe-Xe pair in 

incommensurate AI. has disappeared. This is what we wanted since thc failure of the 
mean field approximation is due to the large value of this energy. The price paid is a 
reduced. but not drastically reduced, configurational entropy. For x = 0.95, theentropy 
deviates from the mean field value by only 5%. 

These equations have been applied to Ar-rich, Xe-Ar mixtures using the technique 
described in section 5. Using Steele’s values of the Lennard-Jones parameters and T = 
50 K. a typical set of values is given in the following table. 

WB 
.I ’” 

R X y U/,  

3.99 0.905 0.7 38 31 

The values of W ,  and WB are plausible. The value of x is very close to the real one. 
y is too small. However. in view of the fact that lattice relaxation has not been taken into 
account. the agreement is quite encouraging. 

7. Conclusion and open questions 

Three different mixed monolayer approaches have been investigated: a mean field 



Phase diagram of mixed submonolayers 4599 

theory taking thermal expansion into account; a low-temperature argument; and a tough 
hexagon approximation which takes short-range order into account. 

The tough hexagon approximation has been applied only to Ar-rich Xe-Ar mixtures, 
when Xe-Xe pairs are forbidden because of their huge energy. The results are promising 
and could presumably be improved if strains were taken into account. The main effect 
would be a modification of U i B ,  the energy of a Xe atom in an Ar matrix. This would 
not be difficult to calculate, but this complication is left for future work. 

We predict very different phase diagrams at lowtemperatures for Xe-Kr and for Xe- 
Ar mixed submonolayers at equilibrium. In Xe-Ar mixtures, we find no commensurate 
phase at low temperature. This result is not really io disagreement with the observations 
of Bohr et a1 [ll] because equilibrium is not easily reached at low temperatures. The 
phasestudied by Bohretalmay well have been metastable. On theother hand, we have 
heard from experimentalists that Bohr’s experiments are not easy to reproduce because 
of the uneasy miscibilityof Ar and Xe (Lauter, private communication). Thus, our phase 
diagram (figure 4(b)) is not without relation to experiment. The miscibility of G-Xe 
mixtures at zero temperature is a remarkable property of an adsorbed film. Without 
substrate, only stoichiometric solid solutions are possible at T = 0 in any system. On the 
other hand, our theoretical phase diagram would be modified if longer range interactions 
were taken into account, but the modifications would be far beyond any experimental 
relevance. 

Our other contribution is a mean field theory which takes the vibrational entropy 
and thermal expansion into account. This theory generalizes that of Gordon and Villain 
[22] valid for a pure system. In both theories, only the lowest order in T has been 
explicitly calculated, and this is a serious drawback for experimental applications. Note 
that our treatment is different from usual self-consistent theories of the commensurate- 
incommensurate transition [=], where only the substrate potential is renormalized. 

We have not succeeded to a greater extent than Marti er a1 [12] in obtaining a 
quantitative agreement between the experimental phase diagram and the mean-field 
theory. Although we have improved the theory of Marti et af by taking vibrational 
entropyinto account through the coefficients &of formulae (12) and (13), we have not 
been able to calculate these coefficients with a sufficient accuracy. In the case of X e K r  
mixtures, the experimental data have been adjusted by phenomenological potentials, 
which is equivalent to adjusting the coefficients K,. In the case of Xe-Ar mixtures this 
method implies an effective substrate potential for Ar which is much too low in the Xe- 
rich side, and completely fails in the Ar-rich side. Thus, the mean field approximation 
yields acceptable qualitative results only when the difference between atomic radii is 
not too large. 

It is of interest to recall that three-dimensional rare-gas crystals of Xe and Kr, and 
of Ar and Kr, are miscible [24-291 in all proportions near the melting curve. This is in 
agreement with the mean field approximation, an extremely crude version of which is 
presented below. Neglecting the configurational entropy, the grand potential is given 
by a formula analogous to (28) withp = 0 and the oeyrs replaced by Z f i q  = 12 U,: 

Q ’ d / N O =  T[xInx+( l  - ~ ) l n ( l  - x ) l + [ ( l - ~ ) ~ U ~ ~ ( R )  
4- 5(1 - X ) ~ B A ( R ) + X ’ ~ B ~ ( R ) ] - ( ~ - X ) ~ *  - X ~ B .  

At the critical point the first three derivatives of Q with respect to Y vanish. For the 
sake of simplicity, R will be assumed to be k e d .  For instance, a2(Q/N)/aX2 = 0 will be 
written instead of d2Q/axz + (a2Q/axaR)dR/dx = 0. This is presumably sufficient to 
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obtain an order of magnitude. Then 

J(Q3d/N)/Jx = T[ln x - In(1- x ) ]  + 2[(x - 1)0, ( R )  
+ ( l - k ) o ~ A ( R )  + x U B B ( R ) ] + I ( A  - I ( B  =O. 

a 2 ( Q 3 d / N ) / a X *  = r [ l / X  + 1/(1 - X ) ]  + 2[ O A A ( R )  -~OBA(R)  
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OBB(R)]=O 
a 3 ( Q ~ / N ) / a x 3 = T [ - i / ~ * + i / ( i - ~ ) * ] = 0 .  

The last equation yields x = 4 and the critical temperature is then obtained from the 
previous one: 

T2d = $ [ ~ A A ( R )  - 20~ , (R)  + o B B ( R ) ]  

This rough evaluation yields quite low values, less than 40 K. Experimentally, the 
only thing known is that T, is lower than the melting temperature, in agreement with the 
above evaluation. 

Coming back to  the two-dimensional case, an open question is as to whether super- 
structures can be stablc at low temperature. None has been found experimentally [ll, 
121. Theoretically, the ground state has been seen to be highly degenerate when (21) is 
satisfied. A high ground-state degeneracy generally implies absence of order, so that 
presumably there i s  no superstructure, ax least in the present approximation where 
elastic effects and interactions beyond nearest neighbours have been neglected. 

It is clear that the mean field approximation is a first step in a hierarchy of approxi- 
mations. The next step would treat correctly one atom and its seven neighbours in the 
rigid potential created by the average lattice. In view of the difficulties encountered in 
the mean field approximation, it should be difficult. 
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Appendix A. The mean field approximation 

The present appendix applies to any sublattice structure. In appendix B, the equations 
will be solved in the absence of superstructure. 

The mean field approximation is understood here as corresponding to the 'best' 
density matrix [15] of the form 
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and 

The notation pp = p , ( ( R ; ) )  has been used. 
The 'best' density matrix is given, according to Bolgoljubov's variational rule [15], 

by the minimum of the grand potential - 
a = - r l n i +  ~ - % - ~ p , p r )  

(A)-  = Z-'TrAexp(-@%). 
( I . E i  

The first term of (A5) is given by 

i=n(iiA+ia) 
i 

where 

The second term of (A5) contains a part 

and, in the commensurable phase, also the term 

(xAS)- = 2 j (d2ri/R?,)W'Jc) exp(-fivie(ri))/(f;A +i ,n) .  

x:  = (p4)-  = (iiA + i r B ) -  I zio. 

(All)  
l't 

The last term of (A5) contains the average value 

('412) 

In order to apply Bogoljubov's variational principle we need the variations of the 

C3w.rj(3?)- = (iiA +i;B)-'&[v;&;) - (viAp: + vcBpT)- - T] 

various terms of (A5) associated with any given variation of V,m(Fi). For instance 

(A13) 

where bo is the variation of exp[ -@vte(r,)]/R& 

a0 = S[exp(-@v,,(,,))/Ral. 

The variation of the first term of (A5) is 

~ b , , ,  In i = r(iiA + ~ ~ ~ ) - l 6 ~ .  



, -  

U&, - R, + r, - r , ) ~ ; )  a,, 

where 

(2 UJR, -Ri + r ,  - r i )p; )  = 
~ 

(iiA ti;B)-’(2,A +tIB)-’  
QYI “/ 

X (I (d’rt/R8) (i (d’r,/R?N&, - R, + r, - rl)exp(-Pv,e(rJ) 

x e xp( - N i e  (r, 11, 
The variation of the last term of (AS) is 

ae,r, 2 pAa(P!)- = + fiB)-’ (.e - z p A ( p k ) )  60. (A17) 
i m 

The variation of (.411) is 

&=,,,(%?As)- = 6 o ( B j A  + i;B)-’We(r;) - 6o(i=;A + i,B)-’ 

x (d?r;/c?i)w,(ri)  exp(-Pvi&i))/(iiA + Z<B). ( A W  

The variation of (A5), which should be zero, is the sum of (A14) to (A18) with 
appropriate weights. Dividing by the common factor ( iA + iB)-’ 6, and equating to 
zero, one finds 

v,&(r) = 

, i  

1 (d ’ r ; / R : ) ( i J A  + ip)-’ 
i Y 

u,(Ri - RI + r,  - rl) 

x e x p ( - P l i l y ( r , ) ) + W ~ ( r ) - y ~  + ~ A ( ~ - x , ) + P B x , + L ; ( T , ~ ) .  

The constants Li are given, according to the previous argument, by an expression 
which hasnot tobecalculated, Indeed,if (A19)isinsertedintheright-handsideof(A5), 
it turns out that (%)- and (pp)- are independent of the constant L,, while - T l n Z  
contains a term L, which is exactly compensated by a term -L ,  coming from -(%e)-. 
Thus, (A.5) is independent of L,. These constants have therefore no physical meaning. 
The L, may be chosen such that the last three terms of (A19) vanish. Then 
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This system of integral equations should be solved with the constraints (A12) and 
(AS) for given xB = x and xA = 1 - x. This is the central difficulty of the problem. 
Inserting ( M O )  into (A9) and using (A10) and (Al l ) ,  one finds 

(2)- = 2(%*A)- + (%As)- - P J P i J - .  

s i =  - TC In(ii, + i ie)  - 

2 ,  + i, = iiA[l + x;/(l - XJ] = iiA (1 - x,)-’ = i , B / x i .  

(A21) 

Comparison with (A5) shows that the grand potential is given in the mean field 
approximation by 

(’422) 
i 

Inserting (A12) one finds 

(‘423) 

Using this equation, (A22) can be written in the following form where the con- 

si= T X { x ,  In(xi/i,B) + ( 1  -xi)ln[(l - x i ) / i U ] )  -(XAA)-. (A24) 

In the absence of superstructure, v,m, i;, and xi are replaced by ve, i, and x in the 

figurational entropy explicitly appears. 

i 

basic formulae (A19), (A12) and (A24). 

Appendix B. The harmonic approximation 

It will now be assumed that no superstructure is present. Thus, the system (A19) consists 
‘only’of two integral equations. Even one would be too much. The best one can do is to 
assumeacertainformfor ~~,whichdependsonafinitenumberofnumericalparameters. 
Insertion into (A19) then yields an equation which can be solved if additional approxi- 
mations are made. 

An additional difficulty is that, even if some functional form of ve is assumed, the 
integJals in (A19) can generally not be analytically performed. An appropriate form of 
the V,, which allows an analytical calculation, is the harmonic approximation, which 
unfortunately is physically not good except at low temperature. A square-well potential 
would solve the mathematical problem as well but physically it would be even worse. 
Thus, the following form will be assumed. 

vlr(r) = V . ( O )  + K,rZ ol=A,B. (B1) 

The four parameters Kcand vJ0) = A,can be obtained by inserting(B1) into (A19) 
and replacing U ,  by its Taylor expansion limited to second order. The same results are 
obtained more consistently by looking directly for the ‘best’ potential of the form (31). 
This can be done by inserting (BI) into (A5). The integrals are over Gaussians and are 
easily performed, yielding 

i, = ( z T / K , R ~ )  exp(-pV@(O)) (B2) 
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In (B4). the Taylor expansion of U, has been limited to second order. One must do 
better if one wants to obtain the A-term in (15). The above relations can be inserted into 
(A5) and the derivatives are easily calculated with the help of (A12). In particular 

a x g / J K e  = (x,xi - ~ 6 , t x o ) / K a  (B5) 
ax&, = ( K , / T ) a x , / J K , .  (B6) 

For the sake of simplicity, the calculation will be restricted to the incommensurate 
phase. It follows from (A5) and (B2-B6) that 

N 
J q a A ,  = ( K , / T ) & / J K ,  +-E QnyxWxy  - Nx,.  

K ,  Y 

Since both derivatives of 0 should vanish according to Bogoljubov’s formula, it 
follows that 

K ,  = E Q,xy.  (B7) 
Y 

This is formula (15) in the incommensurate phase to order 0 in T. 
Equation J 8 / 4 ? . ,  = 0 yields, after a short calculation. 

C t t x E  i T E  Q , x , / K ,  + T x  Q : p s / K ;  - - ~ p < )  ax,/J?.,  = 0. 
-f E 

The expression in brackets should vanish. One finds 

h < = Z U  ‘5ixg + T Z  QtrXQiKg + T -&. 
E 

0 can be given by several equivalent formulae one of which is 

G =  TN((1  - x)ln[(l  - x)KAR: / r rT]  + x l n ( x K , R ; / n T ) }  

(B9) 
N 

- (TI  (TI 

+ N Z x , h ,  - O,X,X,  - N T X  Q . , X , X ~  + NT. 

Toobtain thisequation, use should be made of the following equation deduced from 
(87). 

Equation (13) can be obtained from (BS-BlO). 

Appendix C. The tough hexagon model 

The derivative of (28) with respect tox should be equated to 0. yielding 

a ( Q , / N ) / a X =  Tln[l - (1 + 6p)(l -x)] - Tln(1 - x )  

+ {(I - p ) ( x  - 1)fi,(R) + (1 - - 2p f ZPX)OAB(R)  

+ [ x - p ( x - l ) ] U B B ( R ) } t p A - ~ B  =o. (Cl) 
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In the commensurate phase, formula (12) will be used again, but deprived of its 
vibrational entropy, i.e. 

Q , / N o = T [ Y ~ ~ Y  + ( I  -Y)W - Y ) I  + ( 1  -y)WA(O) +yWB(O) 

+ - Y ) Z o A A ( R O )  +2y(l -Y)oBA(Ro) + Y * O B B ( R O ) ]  

- ( l -Y)pA-YpB=o.  
The derivative should be equal to  0 at equilibrium, i.e. 

W & l N d l a y  = T ~ Y  - W - r)l - WA(o) + WB(o) 

+ [(Y - l )“AA(RO) + - 2y)fiBA(RO) + 
+ p *  -pg  = o .  

Elimination of pA between (28) and (Cl) yields 

[T/(1+ 6p) ]  In[l - (1 + 6p)( l  - x)] - ?(1 - p ) ( l  - x)* 
x (OAA - 2UAB + UBB) + $OB, = pB. 

Combining this with the corresponding formula for the commensurable phase 

T h y + ( l - y ) O A B  - &(1-,V)’(fiAA -2PAB + fiBB) + tGB +WB(o)=pB 

one finds 

-w,(o) = hi& - t O B B  - & ( I  - y)2(@AA - 2i icAB + GB) 
+ [(l - p)/2](1 - x)2(Ou - 2UAB + OB,) 
- Tln[l - (1 + 6p)(l - x) ] l / ( ] ’* ) / y .  (C2) 

Similarly, elimination of pB between (28) and (Cl) yields 

[-6pT/(1+6p)]In[l-(1+6p)(l - x ) ] + T l n ( l - x )  

- 1[(1 - p)x2 + p l (U* ,  - 2 0 A B  + OBB) + tox, = PA. 

Tln(1- y )  - ky’(eAA - 2Oe, + PBB) + $eAA + w,(o) = pA 

Combining this with the corresponding equation for the C phase: 

one obtains 

-W,(O) = tOXA - tu;, - b2(CicA, - 2ir .  AB + irc BB ) 
+ +[(I - p ) x z  + p](OAA - 20,  + OBB) - Tln(1 - x ) / ( l  - y )  

- [6pT/(1 + 6p)l In[l - (1 -+ 6p)(l - x ) ] .  (C3) 
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